Site Navigation

Forum Categories
- Announcements
- General Discussion
- New Members
- Forum comments
- Fishing Reports
- Fishing Videos
- Fishing Discussion
- Fish Stories
- Trading Post
- Salt Water
- Fresh Water
- Recipes
- Charters and Guides
- Boats and Motors
- Electronics
- Rich Lindgren
- Kayak Fishing
- Hunting and Camping
- Maglite Flashlights
- Hardware/Software Help
- Camping Gear
- Hunting Gear
- Maglite Sales
- Link Directory
- AIG Top Sites
- Fishing Charters
- Free Tackle
- Charter Listings
- Saltwater Tides





All in General Outdoors Top Sites

Freshwater Fish ID
Saltwater Fish ID


VHF Radio Antennas

Side scan sonar, fish finders, radars - ask your questions or share your experiences here.

VHF Radio Antennas

Postby allingeneral » Sun Jun 01, 2008 8:35 pm

VHF Radio Antennas - Power, Frequency, Radiation, Gain, Loss, Transmission Patters and other factors regarding VHF Radio Antennas.

Originally posted at

Unlike a radio receiver, a VHF transceiver must have an external antenna in order to transmit its signal to a distant listener. Receiving signals is easy, getting the transmitters power into the atmosphere takes a bit of doing. You choice of antenna will play a large role in how well your radio's signal will be heard by other stations.

Success in transferring energy from the radio's radio frequency power amplifier to the atmosphere depends on both the type of antenna you chose and the specific coaxial cable used to connect the radio to the antenna. At the frequencies used for marine VHF communication (centered on the two meter band, 155 MHz) a considerable amount of the transmitter energy can be lost during its passage through the antenna cable. The energy losses that occur with the typical small diameter (3/16" o.d.) cable supplied with many antennas can amount to 80% of the input power per 100 feet of cable. Power loss in the antenna cable may not be of great concern on a small powerboat, where the length of cable from the radio to the antenna is often only 10-20 feet. Conversely, a sailboat's antenna, mounted on the top of the main mast may require a cable length in excess of 100 feet, making cable loss a major concern. In general, the larger the diameter of the cable the lower the loss per foot. Successful marine use requires the highest quality coaxial cable. The insulation must be of a type that will not absorb water. The woven shield layer must have a high shielding density and it and the inner conductor wires must be tin plated to prevent corrosion. Although marine grade coax cable may cost more than cable made for land-side use, it is well worth the relatively small added expense.

The coaxial connectors used to connect to the cable must be marine grade if they are to provide satisfactory service over time. Although they require some skill in application, crimp type connectors installed with the proper crimping tools are likely best for this application. Soldering the connector to the cable is a good choice if you know how to solder. Citizens band and closed circuit TV connectors are not suitable for this service. Buying the best quality connectors is a wise investment.

The strength of the transmitted signal available to a distant receiver depends largely on the performance of the antenna. Since the boat is free to maneuver the antenna must radiate equally in all directions. VHF antennas are often described as having a certain amount of "gain", an indication that they can increase the strength of the transmitted signal. In fact, they cannot increase the amount of energy received via the coax cable from the transmitter, however they can redirect the available energy in a way that makes it most effective in reaching a distant receiver.

A truly omnidirectional antenna would radiate energy equally in all directions. The radiation pattern would resemble the light emitted from a spherical light bulb. Clearly, sending energy directly upward or downward would be wasteful, there are no marine receivers above or below the boat. Properly designed, an antenna can redirect some of the energy that might have gone up or down and thereby increase the amount directed toward the horizon. A short vertical radiator, usually about 3 feet long will radiate little energy upward or downward, thereby increasing the amount radiated horizontally, toward the distant horizon. The increase in perceived energy is usually referred to as antenna "gain". The short antenna will typically have a gain of 3 db (3 db equals a doubling of signal power). This gain effect can compensate for some of the energy lost in the passage of RF power from the transmitter to the antenna. Making the antenna longer increases the directional effect, the signal is further "squished downward", radiating more energy in the direction of the horizon and still less in both upward and downward directions. Depending on antenna length and design, this type of antenna can have a power gain of 6 or even 9 db.

The law against free lunch applies to antennas. The greater the gain of the antenna the more directional it becomes. Everything will be fine so long as a 6 or 9 db antenna is vertical and stable. However, as the vessel rolls and pitches the antenna will no longer be vertical. The signal radiated from the more directional 6 or 9 db antenna may then be directed upward into the sky or downward into the surrounding sea, rather than in the direction of the horizon. A good general rule for antenna selection is to use a 3 db antenna for sailboats and either a 3 or 6 db antenna for power boats. In general, 9 db antennas should be reserved for use on land. The directional characteristics of the antenna operate in the receive mode as well as when the antenna is used for reception of incoming signals.
The only way you'll ever catch fish is to Go Fishing Forum (.net)!! :)
AIG Outdoors and Tactical Supply
Discount Fish Tackle
User avatar
Site Admin
Posts: 1239
Joined: Mon Mar 06, 2006 8:39 pm
Location: Virginia

Return to Boating Electronics

Who is online

Users browsing this forum: No registered users and 1 guest